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SUMMARY 

Recent proposals by Oomory and others for solving linear 

programs Involving Integer-valued variables appear sufficiently 

promising that It Is worthwhile to systematically review and 

classify problems that can be reduced to this class and thereby 

solved.  Historically non—linear, non-convex and combinatorial 

problems are areas where classical mathematics almost always 

falls.  It is therefore significant that the reduction can be 

made for problems Involving multiple dichotomies and k—fold 

alternatives which Include problems with discrete variables, 

non—linear separable minimizing functions, conditional con- 

straints, global minimum of general concave functions and 

combinatorial problems such as the fixed charge problem, 

traveling salesman problem, orthogonal latin square problems, 

and map coloring problems. 
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ON THE SIONIF1CANCE OF SOLVING LINEAR PROGRAMMING PROBLEMS 

WITH SOME ItfTEOER VARIABLES 

George B. Dentilg 

Recently R. Oomory developed a theory of automatically 

generating "cutting planes" which permits efficient solution 

of linear- programs In Integers In a finite number of steps 

[ 1 ] .  This approach has been generalized to a cat« whtrt sowi 

variables are continuous and some are constrained to be Integers, 

t ;» E.N.L. Baal« [2], and In a more direct way by Oomcry [j], see 

also [4].  Small scale test problems have Leen successfully 

computed.  The procedure Is so promising that It Is relevant 

to systematically review and classify problems that can be reduced 

to this class.  We shall show that a host of difficult, Indeed 

seemingly Impossible problems of a non—linear, non—convex, and 

combinatorial character are now open for' direct attack. 

The cutting plane approach was first proposed and its 

power demonstrated Ly successfully solving an example of a 

iarga scale traveling salesman problem by PXilkerson, Johnson, 

and the author [5] • Manna and Markovlts explored this technique 

further In ["] and pointed how it could be applleJ to solve 

problems involving non—linear objective forms (separaole In 

the variables but not convex). 

In Section I we shall give a general description of the 

cutting plane approach and then describe the principles for 

solving several general type problems.  In the later sections 
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tiieae  will  be applied  to several   well-known  prollema.     The 

outline  for   the paper la as  fellows: 

Section  I:     aeneral   Irinclples 

(a)    The Method. 

(t)     Dichotomies. 

(c) k—fold  Alternatives. 

(d) Sulectlcn  from tn8n>   pairs  of  regions. 

(e) Discrete  Variable   Problems. 

(f) Non—Linear- Objective  Problems. 

(^)    Conditional   Ccnslrelnts. 

(n)     Finding a   jloial  minimum  of a  concave  function. 

Section  II:     Fixed  Ch- r^e  Problem. 

Section  HI:  The Traveling Sal«nuw PrvblMi. 

.Section  IV:     The  Ci tho-ional—Let In  Square   Problem. 

Section V:       Fcur-ColorTn^ a  Map   (If possible). 

I;     Seneral   \   Inciples 

(a)     The  Method:     The  cutt!n»j  plane  methon   conslats   In 

first   solving  the  llnea:   pro^.ammln^  problem  without   the 

Integer-  constraints.      If  the  optimum solution  happens  to 

satisfy   these conditions  all   Is  well.      if not  then additional 

linear Inequality constraints (callad cutting plants) ara addad to 

the  system  in  such  a   wa^,   as   tc  remove  the  non—adml ssl i le  extreme 



point solution and yet retain all adm1•eible eolutione (e.g., 

those having 1nte1er values). In principle, that this could be 

dene haa been known tor aa.eti ... Por exaaple,a plane that goes 

thr0\18h all neishborins vertices or the non-ad.mieeible extreme 

point can be ueed as cutting plane in the case where all 

variables must have values 0 or 1. However such a procedure 

ha• been regarded •• p~bably too slow and actual problems 

until recently were solved usins more efficient cutting planee 

whose validity depended on ~eoial arguments. This weakness 

haa been overcome by the recent proposals which geneP&te cutting 

plane a 1n an efficient manner. It is the author' a belief that nC\f 1 t 

ia only a aatter or time before a aubroutine ror integer and partial 

integer aolutions will be part or electronic computer simplex 

oodeo. 

Let ue now turn to the main eubject or this paper, types 

or problema that are reducible to linear programs some or all 

or Whoa• variables are integer-valued. 

Quite often papere will appear 1n the literature which 

formulate a problem in L.P. (linear programming) form e ) ~ept 

tor oerta1n aide conditione like x1·x2 • 0 or the aum of terma 

or thta type such aa x1 ·x2 + x,·x4 • o which imply for nonnecat1ve 

variablea ~t at leut one variable at eaoh pair muat be •ere. 



Superficially this seems to place the ~rotlem in the area of 

quadratic pro~rammin~ . However the presence of auch conditions 

can entirely change the character of the problem (as we shell 

see in e moment) and should serve a wernin~ to those who would 

apply w1lly-nilly a general non-linear pro~ramming method. If 

we 6raph the conditions x1 ·x2 = 0, x1 ~ 0, x2 ~ 0, x1 + x 2 ~ 1, 

the dou ble linea depict the domain of feasi ble solutions. It 

will l e noted that it haa two disconnected parts. I f there are 

many dUCh dichotomies ln e larger problem it can result i n a 

domain of feasi ble solutions with man y d1aconnec t ed parte cr 

connected non-convex regions. For example, k pairs of variablea 

in which one ia zero m16h t lead ~ o 2k disconnected parts. Uaual 

mathematical approaches can 6U&rantee at ues t e local optimu m 

solution to such problem• i . e., a solution whic h is optimum onl y 

over aome connected ronvex part. 

It haa been well known that t y special devices that the 

local optimum solutions could Li e avoided in many cases by t he 

introduction of inte~er valued varia lea but this haa only been 

or paaaing intereat until the recent development• rendered 

t hla approach practical. Our purpo .. here will be to 
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8y»t«nttlit this knowledg« 

(o) Dlchctomlss:    Let us be^in  with  the Important  class of 

problems  that have  "ellher-or"  conditions,     ror auch a  proLlem 

to  Le difficult  computationally  there  must  be many setj  of  such 

condltlona.     Let  ua focus our attention  on one of them,  say 

(1) EITHER 3(x1,X2,...,xn)  > 0 

(?) OR H(x1,X2,...,Xn)  > 0 

must hold for valuea of (x,,x0,•••.x_) chosen over some set S. i'   2'       '   n 

We do not exclude the caae of both holding If possible.    For 

examples contractor In a bid mignt stipulate either x, > $10,OCX) 

or x,   - 0.     If all  bids are nonne^atlvt so that x,   > 0, then we 

can write 

EITHER x1  - 10,000 >  0 

OR - x1 > 0  • 

From other conalderatlona  It may  be known  that no bid can exceed 

$1,000,000 ao that  the aet 3 of Intereat  Is 0 ^ x,  < 1,000,000. 

We now assume that lower bounds for the functions J and 

H are known for all valuea of (x1,x2,...,x ) in 3. If LG Is 

a  lower bound  for G and L*, for H then for    i« 1  the condition 

(3) CJ(x1,x2,...,xn) - SLQ > 0 

holda  for all  valuea of xi#x2»,,,»xn  ln s*     Similarly for 
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c " 0 the condition 

W H(x1,x2,...,xn)  -  (1  - 8)LH > 0 

holds  for all  values of  (x,,x0,»«».x   ) In 3.     For our example 
1     c n 

we would have 

x1 - 10,000 - ö(-10,000) 2 0 

-x1 - (1 - ^)(-1,000.000)  > 0  . 

The either—or condition   (1,2)  can now be replaced  uy 

(3) a(x1,x2,...,xn)-5LG > 0 (S-0,1) 

(0) H(x1,x2,...,xn) - (1 - ^)LH > C 

(7) 0 <  d < 1 

where  h is an Integer varlalle.     The effect  of   ^ * 1  la  to relax 

the 0 condition when H holds and  of d » 0 la  to relax H when  0 

holds.     If Q and H are linear  functions we have  reduced the 

either—or condition  to three simultaneous linear inequalities 

In wh'ch  the variable - must  be 0 or 1. 

A dichotomy  can  be used  to deacrlbe an  L-shaped  region 

(non-convex):   for example^,   > 0,  x2 > 0,  x,   <  2,  x^ <  2,  and 

either x,   <  1  or Xp < 1.     We replace  this  by 
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0 < x1 < 1 + 5 

0 < x1 < 2 - B 

0 ^   5    < 1 (Ö  - 0,1) 

V' 
/ 

/ 1   , 

If now a problem contain« not  one  out several  such pairs 

of dichotomies  (1) and  (2)« each one would be replaced by a 

simultaneous set  (3),   (6),   (7)  in Integer variatlet 0-« 

(o)    K>-fold Alternatives;    More  generally suppose we 

have a s^t of conditions 

(8) a1(x1,x2,...,xn) > o 

02(x1,x2,...,xn)  > 0 

Op(x1,x2,...,xn) > 0 . 

Suppose a solution is required in which at least k of tha 

eendltlcns must hold alamltaneoualy.    We replace this by 

(9) 0,(x) - 

Gjx) - 

Bl Ll > 0 

52 L2 > 0 

Vx) -w>* 
whe re Lj^ is the lower bound for 0(x) for x - (x1,x2,'»»,x ) 
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In S and £. are Intepsr-valued variables satlafylng 

(10) ^1 + ^2 ■*■  ,,,   + ^p ' P ~ k 

(ii) o iS1ii, 

An example of this type of problem might occur if 

one wishes to find the minimum over the shaded regions 

described by 01 ^0, 02^°' 
03 ^ 0 and at lca8t two of 

the conditions (fy ^0, Qc ^ 0, O5 ^ 0 as in (12). 

(1?) 

\ 
7T 

/ 
/ 

Q, > 0 
' - CT) 

v. 

0 
0^^ > a2>0^ 

/ 

0£ >0 

/ 

/ .    / 
/ 

\ / 

Oj - Qj(x) 
\ 

/ 
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(d)  Selection from many pairs  of repiona:  The aix-polnted   "Star 

of David"  region  shown on  the right  In  (12)  can Lest  be described 

by a dichotomy  In which a  point must  be  taken from one  of two 

triangles.     It  Is  only when there  are  many such pairs  to be 

chosen at  the same  time that  the prol lern i ecomes significant. 

In  general  we might  have several  pairs  of regions  (R-j,HJ)f 

(f^»^)* • • • * (H  ,R')  and  the solution  point x must lie  In either 

hl ££ ^i   for ««eh  1.     For each pair H and R"   we proceed as 

follows.     Let  region  R  be described  iy  a  set  of Inequalities 

C^U) > 0,   a2(x)  > 0,...,an(x) ^ O and  K«   by H1(x)  > 0, 

H2(x) > 0,.«»,H  (x) ^ 0.    The condition that  the point must  be 

selected from either the first or second  region can  be written 

(13) 01(x) - Sl^ > 0 H^x) - (1 - '-)L{  > 0 

Q2(x)  - iL2 > 0 H2(x) - (1 -   OLg > 0 

am^ -^m^ 0 "n^^ ^1 "   ^Ln  > C 

0 <      < 1,   (^  «  0  or  1j 

irhere L.,!' tre lower boisndi for 0^ and H.. The more general 

case of selection from several regions can be done by Intro- 

ducing several 5. as In (10) and (11). 

(e) Discrete Variable Problems:  Suppose that a variable Is 

constrained to take one of several values: x^  - a^ or x^ - a2,..,, 

or x, »a. and at the same time several other variables areas are 

also constrained the same way.  It would be a formidable task to 

test all the combinations. Instead we replace each k fo1J dichotomy by 
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(1^) x^ - a1b1  ^ a2S?  +  •••   + akbk 

(15) b^  -♦■      b^ +  •••   +>>k-  1 bj - 0 or 1. 

Similarly  let x =»  (x, ,Xp, • • •,«   )  repre^. its a   vector which may 

only  take on specified vector values x « a    or x  » ac   or 

x » a   •••.     This may  Le  replaced  L> 

(16) x » ab,   + a   a   + •••  + a c^ 

(17) ^1 •»•      ^2 + •••   +  >
|t- 1 bl » 0 or 1. 

This device  permits the replacement  of a non-linear function 

Fl  1    "    F11^X1^     1"    *     3V3tem    ^Iml     F11^XW     =    0    f0r     ^     "     1»^»",»rri) 

ly a sprlnkllnt: of representative values of x,, say x. - x. 

where r =* 1,2, •••,k. In this case the vector Is the set of 

values   (F, .,!•,,••• ,F   .)  for  some  value x.  « x.. 

(f)  Ncrv-Llnear Objective   Ptollems;     Suppose   the  objective 

form can  be   written 

(IB)        . 7    ^(Xj)   -  z(Mlnj 

where  ^.   Is   non-linear and  non—convex.     Lei  each   ${xi   le 

approximated   ^  a  broken line  function.     I'hese  define a  set 

of  Intervals   1   «  1,<=,...,k of  width h.   and  slopes   s^  for the 

approximating chords.     We now define y.   as  the  amount  of  over 

lap of the  Interval  from 0 to x with Interval  1.     Than 
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(19) x - yj + y2 + ••.  + yk 

and ^(x) Is ^Iven approximately ly 

(?0) <)(x)  * b0 4  •1y1  4 •2y2  ♦...-»- ^y k-'k 

where 

(21) 0 < ^1  < hl i  » l,2,«-.,k. 

In  the case of convex ^,   the procedure la to replace x and 

^(x)  by   (19)   and    (20)   and condltlona   (21).      Here  the slopes 

are monotonlcally  Increaaln: so that 

(:-/) 8i < 82 1 *•• 1 ak• 

For a fixed x, ()(x) would be minimum if y, is  choaen maximum; 

then given y, maximum, so that yp maximumj etc.  In other words 

for the mlnlmlzin.; solution the y. are the overlap of the 1 

Interval with the Interval C to x and all Is well. 

Ho.-ever If ^(x) is not convex as in (27), then simple 

replacement of x and 0(x) would result for fixed x In y. with 

amaller slopes rein-; maximized firat.  In this case the segments 

that comprise y. would Le disconnected and our approximation 

for ^(x) would no longer be valid.  In order to avoid this we 

impoae the condition that 
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(?3) EITHER ^ - y1  - C 

OR y1+1 - o j 

which Implies  that  unless  y.   Is maximum that   y,,,   ■ 0 and  i 

y.   la maximum then y.   ,   >  0  is possible.     We  rewrite  this 

condition 

UU} EITHER Vi  - hi   >  0 

OR -   yl4l  > 0 

and  then  replace  it  formally  by 

US) Yi-^i-l-hi)   ^i>^ 1  - l,?,...,k - 1. 

-Vi+l ' ^l+l^1 "     ■i) > G 

0<^<1 .^ - 0 or 1 

upon substitution of B.  -  1 — 5J  slmpllflos  to 

^  '* v     ^  h     5 ' yl ^ nl     1 

y^i < hi+i 
6i 

0  <  Bi   <   1 (6j[  - 0,1) ^ -1 ^ 

The atove procedure for the non—convex case was dlscussod In 

the paper of Manne and Markowltz ( 6 ].  The convex case will 

te found in [l]  and [8] . 
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(W) 

(llo'Lo) 

V 

h. h 

83,b5) 

(a^t^        / 

I 8 ]| # t ^ j 
\ 

V(a2.b2) 

h; 

-- X M 

-• ♦(x) 
-- 

>('5'lbj 

h, 

A second  method  is  worth  notlnj  tssed  on (l6).     Any 

point  on  the  curve ^(x) cen b*  represented as a  weighted 

average of two successive breakpoints.     Hence we may replace 

x and ^(x)   by 

(^)    x •  Aoao + h*l  + + Vk (0 < x1 < 1) 

«)(x) - xob0 4 ^b1 + ... ^ xkbk 

1 ■  XÄ -f ♦ X,       +  •..   + X, 01 k 

and  then impose the conditions   that all   A.   ■ 0 except  for one 

pair  X.,   ^i^i'     Por k " ^  this   may   ie  expressed  by 

U9) X < 6 

XI 1 eo + Bl 
X2 1 
X3< 

+  51   +  C2 
+  60  ♦  5 
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where    S.   are  integer-valued  variables  sstlsfyln:. 

(30) Sc + 51 •♦■ <^2 + <^, + ^ -»■ S   » 1 (^»0,1). 

Indeed   It   will   ue  noted   that  when S,     =1   for  some   1   =  1 1 o o 
that  the  Irequall lies   Involving A      and   X.     ,   are  relaxed  bot 

o c 
the   remainder satisfy     ^   <  ^ since   their  S*   =  G Ly   (30). 

(.:)  Conditional   Constraints;     Suppose  x  and  y  are  functions 

of several  variables   (x, ,x,.,... ,x   )  for-  which upper bounds 

U     and  lower bounds  L    and  L,   are  known.     We  wish  to  Impose x x y 

conditions  such as 

(31) x  > C =^ y   >  C. 

We  can  write this  as 

(32) FJTHEF     x  > C,   y  > C 

Oh x  <  c 

which  we   rewrite as 

(33; x  > bLx 

x   <   (1   - a}Ux (d =   C,l; 

where the first Inequality Is wrl l on (>j Ir,stead of (>; 

Lecai^se the condlt'on y C is automa* Icelly relaxed for 

x  =  0  :-:,   selectln;   ^=   1. 

Ue  can  now elaborate  this   to   Impose   conditions  sjcr.  as 
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(5*) x > 0 =*> u 2 0 

x < 0 => w 2 0 

which may be written aa 

(35) ^Ih^x 
U^61 ^ 
x ^ 82 ÜX 
W^52 ^f 
S1 4 S2 - i (^ - 0,1). 

For example, suppose In a T-perlod program we wish to 

complete a specified work load by the earliest period possible. 

Let zt be the cuoaulatlve sum of activity levels from the t 

period thru the last period T, then we wish to arrange matters 

so that x. « 0 for the smallest t. In this case we can define 

for t • 1, 2, .,., T 

(36) ^t - 0 ==* »t * 
0 

which «e may rewrite 

(37) xt i it  üt it . 0,1 

where U. Is an upper bound for x , 
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and determine Min  z   v   ere 

(5b) 1-   ^4  B2 -»-•••   -»-Rp 

Flndln    a    lobel  minimum cf  a   concave  function   .     Suipcse 

the ooncave function Z ■ Z(x. »x«,... ,x  )   la to be mlnlrrlzed over 

a   region !■.     We  shall  aasuine  :•, convex  fo:1 convenience here 

not In     that   the  devices  d'sc.ssed   earlier- extend   the  domain  to 

the  wide  class   expresslLle  ty  eltner—or  conditions.      We   suppose 

i    to  ; e   :1 ven  af'er1 suitable  cnan  e   In  varieties   In   standar-d 

linear   pro   rammln;   Torr'. 

(39) -x = e x  > C 

where  h  Is  a     iven  :n x  n  matrix  and  e  a   ^Iven m—component   vector. 

This is Intrl nilcall;. a difficult problem Lecause the 

concave function could have local minima at many. Indeed at 

all  tne extreme  points  of  '•■. 

The concave   function  - may   re     'ven explicitly   or 

ie     iven  Implicitly.       Per example. Suppose  vector'  y   and   quantity 

z   for   f1xed  x   : 3      1ven   iy 

(40) ry   =   f  + "x y   >  C 

z   =  ax  — >'.l n    •" y 
> ix 

where   i-   and   h   are    /.ven  ms trices   and   f,   u,   ai.d   -"   .iven   vectcra. 

Tr.is   is   the  sitjaiion  discssed   In   the  jppllca'lcn  of  these 

f'3  application  developed   Jolntl-,   with   Philip   Wolfe. 
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mcthoda to Solving Two Wove Panes with Perfect Information 

[9]. Here» however, we shall suppose that Z can reasonably 

be approximated at all points x In R by the minimum Z of a 

finite set of k tangent hyper-planes. 

(41) z - a11x1 + a12x2 + ••. + alnxn - b^      (i - l,2,...,k), 

to the surface Z - Z(x). The problem reduces to choosing Nin Z 

where Z must satisfy at least one of the conditions 

(42) Z - [a11x1 + a12x2 + ... + alnxn - b^ ^ 0 

Z - [a21x1 + a22x2 + ... + a2nxn - b2] ^ 0 

Z - [aklx1 + ak2x2 + ... + aknxn - b^] ^ 0 

which we may rewrite as 

(43)    Z - [a11x1 + al2x2 + ••• + alnxn] ^ - H ^1      (i - l,2,...,k) 

ö1 + Bg -*•••• + 6^ - 1 (6^^ = 0 or 1) 

where - M is some assumed lower bound for the differences; this 

solution depends on the approximation by k hyper-planes of 

the function Z - Z(x).  The solution given in [9], for the 

case where Z is given implicitly by (4o), requires finding x, y. 

Min z, and auxiliary variables v  = {Trltr2t. ,. ,r )  and T]* ^ 0 

for J - 1,2,...^' satisfying 



i1^) Ex = e, Py » f + ^x, z » ax - ßy 

vF3  ^ ^J ' ßJ J " 1'2"-"n 

EITHE? I Hj < 0 

OP y^ < 0 

th where v   » (^it^o»•••»'Li) iß » row vector, F. Is the J  column of 

P, p. the j  component of ß. 

PIXED CHANGE PROBLEM 

Earlier we described a problem where a bidder required 

that either the order x ■ 0 or x > a.  In this and many other 

problems there Is an underlying notion of a fixed oharge that 

Is Independent of the size of the order.  In this ^ase x - a 

represents the break—even point to the bidder.  In general th« 

cost C Is characterized by 

kx + b  If x > 0 
(1) C - ^ 

0        If x = 0 

where b Is the fixed charge.  We may write this In the form 

(2) ^ - kx + 6t (6 - 0,1) 

where x = 0 If L   » 0 which we  Impose by 

(3) x  < BU 
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C1*) 0 < 5 < ! (6 - O»1) 

whtr« U la 80IM upp«r bound for x.  A discussion of the fixed 

chargt problem Including this device will be found In the paper 

by Warren Hirsch and the author [10]. 

III. THE TRAVELING SALESMAN PROBLEM 

We shall give two fonnulatlons of this well-known problem. 

Let x... • 1 or 0 according to whether the t  directed arc on 

the route Is from noie 1 to node J or not. The condition« 

(1) r x1Jt - 1 t - l,...,n 
1 # J 

(2) £ x1Jt - 1 1 - lf...,n 

XJJ^ "1 J ■ 1#?#...#n (3) 2 
t,l 

(4) £ d1Jx1J - z (Mln) 

express that (l) there Is only one t  directed arc, (2) there 

Is one directed arc leaving node 1,  (3) there Is only one 

directed arc Into node J,  (M the length of the tour Is 

minimum.  It Is not difficult to see that an Integer solution 

to this system Is a tour. 

In the paper by Pulkerson, Johnson and the author the case 
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cf a symmttrlc distance d-1 - d..  was formulated with only two 

Indices.    Here x 1 or 0 according to whether the route Ml      Ä1J 
from 1  to j QT from J  to  1 was  traversed at some time on a 

route or not.    The conditions 

(5) 

1 
J • 1,2,...#n 

(6) 2 dijxij " z(Mln) 

express the condition that the sum of the number of 

entries and departures from each node is two.  TTiese conditions 

are not enough to characterize a tour even though the x., are 

restricted to be Integers in the Interval, 

(7) 0 < x1j < 1, 

since sub—tours like 

(8) 

2 

also satisfy the conditions.  However If eo-called loop con- 

ditions discussed in [5] like 

(9) X* ^     T   X -- «2   ▼   ^ "l "1    ^ ** 
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are ImpoMd  (in the  same manner that cutting planes are 

introduced as  required)  these will rule out integer solutions 

which are not admissible. 

IV.     THE  ORTHOGONAL  LATIN  SQUARE PROBLEM 

A latin square consists of n sets of n objects  (1), 

(2),...,(n) assigned  to a n x n  square array so that no object 

is  repeated in any row or column.     Two latin squares are 

orthogonal such as 

(1) (1) (2)     (3) 

(2) (3)     (1) 

(5)     (1)    (2) 

(2) (3)    (1) 

(1)     (2)     (3) 

(3) (1)    (2) 

if the n pairs of corresponding entries are all different. 

It was conjectured by Euler that there are no orthogonal latin 

•queres for certain n. In spite of a great deal of research 

by top notch mathematicians the case for n - 10, for example, 

has never been settled.  It has been suggested Informally by 

David Oale that the proposed method be tried in this area. 

The formulation is straightforward and well known. Let 

xlikl " 0 or 1 according to whether the pair (l,j) is assigned 

to row k column i or not. The condition that the pair is assigned 

to o.ily one location is given by 
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(2) 7 x1jki =1 1,J - 1,2,...,n. 

The condition that at leaot one Is assigned to each location 

k, i Is: 

(3) I x1Jki . 1. 

The conditions that 1, J appear only once In the first and 

second latin square respectively In column i Is given by 

jk 

"> ^i ^* = 1* J»k ■ 1,2,•.•,n. 

Similarly, the conditions that 1 and J appear only once In the 

first and second latin square respectively In row k Is given by 

(5)      A xiik/ = 1* ^»^ " lf2,...,n, 

r» xlJk/ =^' J#i"l*2,...,n. 

It  Is  Interesting tc note  that every pair of subscripts  that 

are possible  out of four are summed  to form the six sets of 

n    equations each.    For n   =  10 there are 600 equations,  which 

are too many for a general  linear programming code   to handle 
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tt th« prtsent tlm*.  However with some short cuts Introduced 

It might be tractable In the near future. 

V.  POÜR-COLOFINO A MAP  (if possible) 

A famous unsolved problem Is to prove or disprove that 

any map In the plane can be colored using at most four colors 

where no two regions that have a boundary In comon (except 

a point) have the same color. We shall give two ways to 

constructively color a particular map If possible.  This 

does not contribute anything to a proof of the truth or 

falsity of the conjecture except that an efficient way 

for solving particular problems on an electronic computer may 

provide a counter example. 

Without difficulty It can be arranged (as below) so 

Red 
Yellow v__ ^ Blue 

Black 

that three regions have at most one point in common which 

will be called a node, liiere will be, accordingly, three 

directed arcs leading from any node 1 to other nodes J.  It 

is well known that if It possible to four-color a map then 

(and this will be true conversely) It is possible to treat 
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the nodes as cities and the arcs as routes between cities and 

either be able to make a tour of all the cities or 

to make a group of mutually exclusive sub—tours of the eitlos 

in several even (sub—cycle) loops as below. 

We may associate with each such even cycle sub—tour, 

directed arcs that reverse their direction as we pass from 

node to node 

This means the nodes 1 can be classified Into two classes : 

those which have two arcs pointing away from them and those 

that have two arcs pointing towards them.  Let us set x.. • 1 if 

an arc Is part of a sub—tour In the direction of the arrow; 

otherwise x.. »0. Hence 

(1) 0 < xlj < 1' 

It is understood that only arcs (l,j) and variables x. . are 

considered corresponding to regions that have a boundary in 

common.  All arcs (i,j) that do not correspond to boundaries 

are omitted in the constraints. 

The conditions 
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(2) £    X^  -  251 (61  - 0,1) 

express  the fact there must be two arcs on some sub—tour 

leading a*ray from node 1  If 6^ - T, otherwise  there are none 

The conditions 

(3) E *ij - * - 281 1J 
1 

state there must be two arcs on some sub—tour leading Into 

node 1 If 6. ■ 0, otherwise none. The  three sets of conditions 

(1), (2), (3) are those of a bounded transportation problem 

and will be integers (at an extreme point) If B. are Integers, 

This would seem to imply that it is only necessary to assume 

that 0. are Integers and the x.. will come out automatically 

Integral In an extremlzing solution without further assumptions. 

However since the objective form Is open to choice by choosing 

it in a non-degenerate way it Is clear that the extreme point 

solution with integral x. , would be determined by the process. 

A second fonmlatlrn suggested informally by R. Oomory is 

straightforward.  Let the regions be r - 1,2,...,R and let 

t be an Integer-valued variable auch that 

0 < V ^ 5' 
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the four values t =» 0,1,2,3 corresponding to the four colors 

If regions r and s have a boundary In common their colors 

muot be different.  Hence for each such pair 

CO ^ - ^ ^ 0 • 

This nay be written In either—or form 

(5) EITHER  t„ - t. > 1 r   B 
mm 

OR      t. - t„ > 1 s   r *- 

which  we may rewrite 

(6) tr - t8  > 1 - 4Br8 5rB  -  0,1 

t8 - tr > - ? + i.5r8    _ 
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